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Abstract. A new class of exact solutions is obtained in explicit form for the Dirac equation with

a pseudoscalar or scalar, or electric static potential. The potential may be an arbitrary harmonic
function the gradient squared of which is a constant. It is shown that the set of such potentials
is sufficiently ample. The simplest example is the linear func#i¢®m) = axi + bxz + cx3 +d.
Another example is the functiop(x) = ¥ (z) + cx3, wherey is an arbitrary analytic function
depending on the complex variahde= x1 +ix,. The solutions are obtained using the technique

of biquaternionic projection operators which itself is interesting since its possible applications
are not limited to the situation considered in this paper.

1. Introduction

Exact solutions of the Dirac equation are of special interest, since in many cases (due to
the general facts from functional analysis and the theory of partial differential equations)
it is possible to derive some qualitative conclusions about the behaviour of the quantum
system or even solve the corresponding Cauchy or boundary value problem. In particular,
all corresponding Green’s functions were constructed using exact solutions of the Dirac
equation. Of course, there exist dozens of works on the topic. The reader is referred to the
encyclopaedic monograph [1] for a bibliography and review of known exact solutions of
the Dirac equation up to the late 1980s.

In this work we consider the following Dirac equations: (a) with pseudoscalar potential

3
Yod — D vid +im + yoysqﬁ(m)]ﬂb(t, z) =0 1)
- k=1

(b) with scalar potential

- 3
Yod —Zykak+im+¢(:c>]d><t,w> =0 2)

- k=1

and (c) with electric potential

3
[Voat - Z Vi +im + iyoqb(a:)]d)(t, z)=0 3

k=1
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where the Dirac matrices have the standard [8, 22] Dirac—Pauli form

1 0 O 0 o0 0 -1 0O 0O 0 i
o1 0o o oo -1 o o o -io
=100 -1 o "=lo1 0o o =10 —-i o o
0O 0 O -1 1 0 O 0 i 0 0 O
0 0 -1 0 0 0O -1 O
o o o 1 o 0O 0 0 -1
3 =11 o 0 0 Vs .= 1Yoy1Y2y3 = 1 0 0 0
0 -1 0 O 0O -1 O 0
and wherep, := 2, 9, 1= a—ik m € R, ¢ is a complex-valued function, ardl is aC*-valued
function.

We shall construct a class of time-harmonic solutions of these equatbas:z) =
g(x)€”, wherew € R andq is a C*-valued function depending an = (x1, x, x3). For
example, in the case of pseudoscalar potential (equation (1)) we have the following equation
for g:

3
D2, q(x) = [ia)yo - Z Vi +im + V07/5¢(w)}61($) =0. 4)
k=1

The procedure proposed here consists of the following. First, we rewrite the operator
D%’, and equation (4) in the biquaternionic form with the aid of a certain special matrix
transform introduced in [14] (see also [17, section 12]). Then, applying the technique
of biquaternionic projection operators developed in [15], we construct a class of exact
solutions of (4) in biguaternionic form. In order to simplify the exposition we consider first
the massless, static case £ 0, w = 0) (in section 3); then the general case in quaternionic
form (in section 4), and then using these results we find a class of solutions to (1) in the
general situation and traditional form (in section 5). To do this we have to distinguish two
different cases: (1p? # m? and (2)w? = m? which, in the quaternionic form, correspond
to the situations where the biquaternionic parametgenerated by andm (1) is not a zero
divisor and (2) is a zero divisor. After the class of solutions is obtained in the quaternionic
form we rewrite it in the usual form and the results of this paper can be verified by a direct
substitution of the proposed solutions to the corresponding Dirac equation. In section 6
using a similar procedure we construct some exact solutions to (2) in the static massive
case. In section 7 we deal with the electric potential in the massless case ). A
class of exact solutions in explicit form is also obtained here.

Of course, the application of complex quaternions and even more so, of Clifford algebras
to Dirac equation theory is not new, but has been exploited by many authors (such as
[4-6, 10, 21, 23] and many others). It is an approach that allows one to use the natural
advantages of the algebraic structures to simplify all the calculations. We would like
to emphasize that in our opinion the tools of quaternionic analysis are among the most
appropriate for studying the Dirac operator. The fact is that the Clifford algebra generated
by y-matrices has dimension 16, and it does not make sense to use an algebra of 16
dimensions if the number of equations under consideration is four. Similar arguments led
Sommerfeld to pose the following problem: to rewrite the Dirac equation in a form in which
the rank of the algebra of the involved matrices coincides with the number of components
of the wavefunction. A review of results in this direction can be found in [5, chapter 4].
Thus, representation of the Dirac equation in terms of complex quaternions is in some sense
the optimum although some other interesting possibilities to reduce the dimension of the
corresponding algebra should be mentioned, namely, the real Dirac algebra (e.g. see [13])
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and the manner of using the Pauli algebra [2, 3]. Nevertheless the aim of this work is not
to show the advantages of quaternionic analysis over other techniques, but to present some
new results in the theory of exact solutions of Dirac’'s equation. We start with the Dirac
equation written in traditional form and conclude with its solutions also in traditional form,
using complex quaternions only to obtain the results.

2. Preliminaries

We denote byH(C) the algebra of complex quaternions piquaternions). The elements
of H(C) are represented in the forp= Zf:o okix, where{p.} C C, ig is the unit andi,
k =1, 3 are standard quaternionic imaginary unit= —1,k = 1, 2, 3; iyip = —iziy = i3,
iyiz = —igip = i1, igiy = —i1iz = i2. We denote the imaginary unit i@ by i as usual.
By definition i commutes with,. We will use also the vector representationcog& H(C):
p = Sap) 4 Vec(p), where S¢p) := pp and Ve€p) := p = Y o, peix. The complex
guaternions of the formp = p are called purely vectorial and identified with the vectors
from C3. The quaterniorp := pg — p is called conjugate tp.

Let us denote bys the set of zero divisors frofil(C). Note that

PEG & pp=0 > p’>=2p0p < p3=(p)? (5)

(see [17,p 28]). As usual zero is not included&@o

We shall consider thél(C)-valued functions given in a domai? c R3. On the set
CY(Q; H(C)) the well known Moisil-Theodoresco operator is defined by the expression
D = Zle i, which was introduced in [18, 19] (see also, e.g. [7, 9, 11, 12]). Define
§(x) := q(x1, x2, —x3). The domainG is assumed to be obtained from the dom@ic R3
by the reflectiorng — —xs.

In [14] (see also [17, section 12,16]) a map was introduced which transforms a
functiong : G c R3 — C* into a functionp : G ¢ R3® — H(C) by the rule

p = Alg] := 3[—(G1 — G2)io + i(Go — Ga)i1 — (Go + G3)iz + 1(G1 + G2)is].
Note thatA is aC-linear transform. The corresponding inverse transform is defined by the
following equality:
Aol = (=if1 = 2, —fo — 153, fo — 13, 1P1 — f2).
The transformationst and.A~! may be represented in a matrix form as follows:
0 -1 1 0O do

B 1l i 0 o0 -illa&
p=Aldl=51_1 o o 21|l

o i i o0 ds

and

0 —i -1 0\ /jo

. -1 0 0 —i)[a
g=A"l=1 1" o o i 52

0 i -1 0/ \p

We shall need some algebraic properties of this pair of transforms proved in [16]:
(1) Alviyaysyi A Yell = ivp;

(2) Alyryaysy2 A~ pll = izp;

(3) Aly1yaysys A pll = —izp;

(4) Aly1yaysvo A~ pll = pis;
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(5) Aly1y2y3A Y p]l = —ipi>.
Let us consider the following biquaternionic operator:
R =D +&(@)I + M"

where is the identity operatorf is a complex-valued functiory is a constant complex
guaternion, andM* is the operator of multiplication by from the right-hand side:
M f = fa. The operatorR;’ is equivalent to the operatd;,, in the following sense.

Let o = —(iwiy + miy), & = —i¢. Then
R = —AyryoysDPS, AL (6)

w,m

The proof of this equality is a direct corollary of the algebraic properties (1)—(5). of
the transformA. In other words a functiory belongs to keb?.’, (G) iff u := Alg] €
ker RY*(G). Thus, to find the solutions of (4) we first find the solutions of the equation

RPu=0 @)

using the algebraic advantages of complex quaternions as opposed to the Dirac matrices
and then after applying the transfordr?® to u write down the corresponding solutions of

(4). For the cases of scalar and electric potentials we shall show equalities similar to (7) in
section 6 and section 7 respectively. Now we start with the aase0.

3. Exact solutions of the equationR5*u = 0
In this section we use the technique of projection operators introduced in [15]. Let us
consider the equation

(D +&(x)u(x) =0 8

in some domainG c R3 which, in particular, may coincide witl3. Let us consider the
eikonal equation

(gradu)? = &2, 9)
Note that here and in what follows a vector squared is understood in the quaternionic sense:
(R)? = (hai1 + haiz + haiz) (hi1 + haiz + haiz) = —(h, h)
where(., -) denotes the usual scalar product. Thus,
(gradu)® = —(gradu. gradu).
Denoteg := gradu. Then for any solutiont of (9) we have
@) +g(@)(E(x) —g(x) =0 vz e G

that is, the functiong + g and& — g are conjugate zero divisors and, consequently, generate
a pair of mutually complementary, orthogonal projection operators:

Qr—i@i)l
.—25 g)l.

The operatorD + £1 can be rewritten in the form

D+£l=0"(D+gh+Q (D-glh)=D+9 Q" +(D -9 Q0"
or alternatively

D+&1=Q%'Dn 1+ Q n'Dnl =nDn Q" + 7 'DnQ"~

wherey = e andg = gradu = — 3%,
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Thus, equation (8) is equivalent to the system
0*nDytu=0 (10)
0 n*Dnu=0. (112)

The general solution of each of these two equations can be immediately obtained in integral
form (see [15]). The main problem is to find the intersection

ker(@*nDn~'1) ()@ n*Dnl).
Let us assume that the functignsatisfies the following two conditions:
(1) A8 =0 (2) (gradg)® = C? (12)

whereA is Laplacian and” is an arbitrary complex number different from zero. The class
of functions satisfying the conditions (12) is sufficiently ample. The simplest example is the
linear functioné = ax; + bx, + cx3 + d, wherea, b, ¢, d are complex constants. Another
example is the functiorf(x) = ¢(z) + cx3, where¢ is an arbitrary analytic function
(condition (1) is satisfied) depending on the complex variabtex; + ix,. In this case
il4
— 1 0¢
grads = | i
C
and condition (2) is also satisfied.
Due to condition (2) we are able to immediately construct the corresponding vgector
satisfying the eikonal equation (9) as follows:

§
= = gradé.
9=59 3
Theng = gradu = —@, wherep = % andn = ei. The projection operators have
the form
L 1 1
o* = —S(g + gradu)l = > 1+ Egrads 1. (13)

Then the functiong)*e~* and Q~e* as well as any functiorf := Q*e *at 4+ Q- e“a~
are solutions of (8) [15]. Here™ anda~ are arbitrary constant complex quaternions. For
example, for the functiog e * we have

D[ote "] = %D [e‘gi <1+ 1 gradg)}

= %- gc 1 *%
= gradg e <1+ gradé,-‘) 2Ce AE.

In the first term we use condition (2) and the second term is zero due to condition (1).
Thus, we obtain

D[ote "] = ——e T (gradé} +C)=—-£Q e
The inclusionQ~¢e"* € ker(D + £I) can be proved in the same manner. Moreover, the
operatorsM“” and M* commute withD. Thus, we obtain the following statement.

Theorem 1lIf the function¢ satisfies the conditions (12) i c R3then f := Qte *at +
0 €‘a” € kerD + £1)(G), wherep = zc’ the operatorsD™ and Q~ are defined by
(13); a* anda~ are arbitrary constant complex quaternions.
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Remark 1.Solutions of (8) similar to that of theorem 1 can be obtained for a more ample
class of potentialg, for instance, for any¥ depending on a combinatigh of independent
variables, wherg8 satisfies (12). In this case the corresponding projection operators can be

taken as followsp* = $(1+ ‘igﬁgggl), and solutions of (8) are obtained in the same form as

in theorem 1, where. = [ £(B) dg. Thus for any¢ depending on a linear combination of
independent variables one can obtain exact solutions of (8), but the extension of the class
of such potentialg for which the technique described above can be applied will be the
subject of a future article.

4. Solutions of the equationR2°u = 0

4.1.

We start with the simplest but necessary, case- 0, o = y € C. The constany can
be included in the potential and §f satisfies the conditions (12) then the functipr- y
satisfies them also. The corresponding solution has the form

_ Ep? _ Ew?
f=0%¢ = a"+Q ex a ekenD + (& +y)I) (14)
whereQ* and O~ are the same projection operators defined by (13){afda~} c H(C).
For anya € H(C) we can include its scalar pas# in the potential. In this way we
restrict our consideration to the most important case .
4.2. Let us assume thai® # 0. We denote by any complex square root from?:
y2 = o?. Let us consider the pair of mutually complementary projection operators

Pt Iz,
2y

The operatorR%" can be rewritten in the following form:
R} =P "D+ E+y)D+P (D+E -y (15)

and P* commute with the operators in the parentheses. Consequently, the corresponding
solution can be constructed with the aid of (14) and (15):

&+ E=p)?

2 —el? -(O+te- + —alt, 5
at+Qex a)+P (Qe x* b+ Q0 ex b)ekerRY

(16)
o’ #0; {a*,a",b*, b~} C H(C). Note that ifac = —(iwiy + miy) (see section 2) then

a? # 0 is equivalent to the inequality? # m? becausen? = w? — m? and the solution
has the form

1 (402 —m?)2 E+/w?-m?)? . .
f= 2J0? —m2 —2(Q+e_ o at+07e a)Vw?—m?—iwiy—mi)
w?—m
(E—/w2-m?)?

_So2—m2)2
1O e T T b 07 T T T b)) (V? — m2 4 iwi + miz).  (17)

As P* and Q* are projection operators (all pairwise commuting), the function (16)
consists of four independent solutions of (7):

f=P"(Q"e

E+9)? E+y)?

fr=Pr(QTe = ah) ff=PHQex a)

E—y (6— (18)

= pr(0te bt = P e b,
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4.2.

Finally we consider the case? = 0 (for the complex quaterniooe = —(iwi1 + miy) this
signifies thatw? = m?). If v € ker(D + £1) then the functiorva € ker(D + £I + M®)
and the corresponding explicit solution of (7) can be represented as follows:

2 2
f=(Qte xa* + Q exa)a. (19)
5. Solutions of the Dirac equation with pseudoscalar potential

Now we are ready to construct a class of solutions to equation (4). We assume that the
potential¢ satisfies the following conditions i ¢ R3 (cf (12)):

() A¢ =0  (2)(gradg, gradg) = C>. (20)
The equality (6) shows that if e kerR.’(G) theng = A"[f] € kerD’’,(G), where
o = —(iwiy + mip) and&(xy, x2, x3) = —i¢(x1, x2, —x3). Thus, the only thing we have to

do in order to obtain the solutions of (4) is to apply the transfetni to the solutions of (7)
obtained in the previous section. Note thapiatisfies (20), the corresponding potenégial
satisfies the conditions (12).

First, let us consider the cas# # m?. The corresponding solutions in quaternionic
terms were obtained in section 4.2. We rewrite the four independent solutions (18) in the
component-wise form:

++
! 4y C

((dg C + dyf 918 + df 926 + dff 938 )io

+(—d; C + df 0nE — d3 9§ + df 0f )i
+(—d) C +df hé + dg 9 — df 836)i
+(—d3 C — djf 01 + dy B + dgf 36 )iz} (21)

E+y)?

e 2z
4y C

= {(dy C — dy h& — dy 96 — dy 336 )io

+(—d; C —dy 01§ + dj 926 — d; 338)i1

+(—dy C —d3 016 — dyy 326 + dy 338)i>

+(—d3 C +dy 01§ — dy 926 — dyy 938)is} (22)
where

d(j)[ = aéy + ia)af + mazi df = —aliy + ia)agt — magt
+ . + P + +. + P +
dy ‘= —ayy +lwag + mag dy ‘= —azy —lwa; +may.

Note that although the constarts;, ai", a5, a3 } are independent, the introduced constants
{d3,d;, d5, d5} due to the action of projection operators are not already independent. A
simple calculation shows that

(@ +m)(—dy +id3) = —y(dy —idy)
(@ + m)(df +idE) = —y(dE +idF).
By analogy we obtain the component-wise representationg farand f~:

(23)

€2
e
= e {UFC + 1T + 15328 + 13 336)io
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+ (=l C + 15 016 — I3 026 + 13 036 )ia
+(—ly C + 13 01& + 1 026 — 1] 938)iz
F(—lFC — I3 0 + [ 026 + 15 82)ia) (24)

E-p)?
2C

4y C

= {Ug C =11 015 — 15026 — 15038)io

+(=1 C — 15 01& + 15 026 — 15 03&)ix
+(—l; C — I3 01§ — Iy 026 + 1] 336)i
F(=l3 C + 15015 — 1] 05 — 15 038 )i} (25)
where
léE = bgy - ia)bli - mbf lf = —bfy — ia)ba[ + mb:f
Iy := —byy —iwb;s — mb} I := —biyy +iwby — mb;
and the following relations hold:
(@ +m)(—ly +il3) =y 5 —ilf)
(@ +m)(ly +il) =y +il3).
Now we are ready to apply the transforAT? to the functionsf++, f¥—, f~+ andf——
in order to obtain four independent solutions of ¢4)" := A™1[f**], g7~ == A7 f 7],
gt = AYf ] and ¢ = AYf ] Taking into account that = —ig,
(£ +y)2=—(¢ £iy)? and thatdrp = d1¢, do¢ = do¢p and dzp = —d3¢ We obtain
o (@2 T1DC + (—df +idg)org + (dg +1idg)dap + (d; +id])dsp
q++=eTC (—dg +id3)C + (d; +id{)0ag + (=di +id3)dx¢ + (dg — id3)da¢
4yC | g +1d3)C + (df —id)dg + (—d —idF)dap + (df +id3)dz¢
(df —id)C + (df +idF)p + (—d3 +idy)dagp + (—dy +id;)o3¢
iz [ (2 T ifl{)C — (=dy + idy )01 — (dy + i6_15)32¢ —(d; + ifl{)83¢
o= | (o +1d5)C — (dy +idy)hag — (—dy +idy )0 — (dy — idg) a9
4y C (d +id3)C — (dy —id;)da¢ — (—dy —idy)dp — (dy + id3)d30
(dy —id])C — (dy +id3)d1¢ — (—dy +idy)d2p — (—dy +id])dae
i (y + il_f)c + (—lg + i13)019 + (I3 + il_g)azqs + (3 + i{f)33¢>
g (g +ilP)C + (3 + 1)1 + (=If + ;)82 + (I — i13)ds¢
4yC | (g +il)C+ (3 =il + (=1 —il7)d20 + (g +il3)0a¢
(3 —i)C + (I§ +il3)01p + (=15 +1il§)00¢p + (=13 +il])0sgp
e [ 2 ~I—il_1_)C —(=ly Jr_ilg_)31¢ -3 + il_0_)32¢ -y +il_1_)33¢
& | (y +il)C = Uy il — (=ly +il)d20 — (Ul —il3)d3¢
4yC (o +_il§)C -y = i17)01¢ — (=11 _.i12_)32¢ -y + il_§)33¢
Iy —I])C — (g +il3)d1p — (—l3 +ilg)dap — (—1; +il])daeh
Finally, let us introduce the following notations:
AT =d5 +idf A3 = —dy +id3
By =1y +ilf By = -l +il3.
Then taking into account the relations (23), (26) we rewrite the obtained solutions in the
following form:

(26)

(@+iy)? ++
e zc
++
= m) 4t 27
q 24,C —(wym)% (27)
_ (o+m)  ++
qu
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where
qgt = ATC + A1 — 1A 020 + A 03¢
qi "= A3C + A701¢ + AT 029 — A3 03¢
+_
o et ZL
= T e 28
1 4yC —(‘“i—)qo* (28)
_ (w-&);m)qff
where
qq” == A;C — A;01¢9 +1A; 090 — A] 03¢
g7 = A,C — A{01p — A7 02 + A I3
got
ew;icy)z q0_+
—+= wtm) - 29
1 4yC (-;_)Clo * (29)
(w‘;m)q;+
where
gt 1= By C + B 1¢p — iBS 029 + By 93¢
g, "= B3 C + B 019 + 1B 0, — B3 03¢
*<¢Eicy)2 ZO__
N 1
== w+m —— 30
1 4yC (J;_)‘Io (30)
(aHy—m) qlff
where

gy =B C — B,01¢ +iB, d2¢ — By 03¢
q; = B,C — B d1¢ — B 029 + B, 33¢.
Thus, we obtain the following statement.
Theorem 2.The functions defined by (27)—(30), wheré", A3, Bf and By are arbitrary

(independent) complex constants, belong talkgy, when the potentiap satisfies (20) and
w? # m2.
To verify this statement one can simply substitute any of the funcdris ¢*—, ¢~ +,
g~ into equation (4) using its explicit form:
0193 — 10293 + 93q2 — pq2 + i(w + m)qo = 0
0192 + 19292 — d3q3 — ¢pg3 +i(w +m)g1 = 0
—0191 + 1921 — 33q0 + ¢qo — I(w —m)g2 = 0
—0190 — 10290 + d3q1 + g1 — i(w — m)qz = 0.
Let us consider the following examplei(x) = axy + bxs + cx3, {a, b, c} C R then
a?+b%+ c?, y = ~/w? — m2. Let us analyse, for instance, the function (28) which
takes the form
AT (C —c¢)— A, (a—ib)
B A (C+c¢)— A (a +ib)
T = 4yC — (A7 (C — ) — Ay (a — b))
— (A5 (C +¢) — AL (a +ib))

_ (axgtbxptergtin)®
2c



7570 V V Kravchenko

where AT and A; are arbitrary complex constants. Notice that the functjon belongs
to kerD’, (R®) for any w € R such thatw? # m?, but that if we also require thatt~
belong to the Sobolev spade!(R3) (see, e.g. [20, p 253]) then must satisfy the condition
a)z < m2.

Now consider the case? = m?. The corresponding solution in the quaternionic form
is defined by (19). Let us introduce the following notations for two independent parts of
the function (19):

2 2
ft=0'exata f =0 era a.
In the explicit form we have

52
e

+_
f_ZC

{((iwaf +mal)C + (iwag —ma3)di& + (iwag mag)dE

+(—iwa; + maf)agé)io + (—(iwaaL — ma;)C + (ia)af + ma;)alé
—(—ia)a; + maf)azé + (iwa;mag')agg)il
+(—(iwa§ma3)C + (—iway +mal)é + (iway +may )k
—(iwag — ma$)oz€)iz + (—(—iway +mal)C — (iwagmag )
—i—(ia)ao+ — ma;)az“g‘ + (ia)al+ + ma{)(‘)gé)ig}
f = %{((Iwa1 +ma, )C — (lway —maz )01& — (lwaz magy )06
—(—iwa; +may)dz8)io + (—(iway —maz)C — (iwa; + may )&
+(—iwa; + may )02 — (iwaz magy )038)i1
+(—(iwagmay )C — (—iwa, + may)01& — (iwa; + ma, )€
+(iwag —mag)03)iz + (—(—iwa; +may)C + (iwag may )01€
—(iway — mag )€ — (iwa; + may )03&)is}.
Applying the transformA~! to the functionsf* and f~ we obtain two independent
solutions of (4):
¢2
ex
+ — A_l S [
q [F71= 3¢
(@ —m)(—af +ia3)C + (af —ial)drp —i(a] —ia)d2¢ + (—ag +iad)dz¢)
(@ —m)((a3 —iaf)C + (—ad +iad)01¢ +i(—ag +ia3)d2p — (a3 — ia])daep)
(w+m)((aF +ial)C + (af +ia3)drp —i(ag +iad)d2¢ + (aF +ia})dze)
(@+m)((ad +iad)C + (a3 +ial)d1p + (a5 +ia;] )02 — (a5 + a3 )03¢)
¢2
e ¢
=AM = =
q [f7] >C
(w —m)((—ag +iaz3)C — (a; —iay)o1¢ +i(a, —iay)d2¢ — (—ag +iaz)d3¢)
(w0 —m)((a; —ia;)C — (—ag +liaz)d1¢p —i(—ay +liaz)d2p — (a; —iay)d3p)
(w+m)((a; +ia))C — (ag +iaz)o1¢ +i(ag +iaz)d20 — (a; +iay)d3¢)
(@ +m)((ag +iaz)C — (a; +iay)d1p —i(ay +iay)d2¢ + (ag +iaz)dzp)
Note that for both cases = m andw = —m we obtain two-component solutions. When
o = m the two first components of each of the solutigns andg~ are zero. Similarly,
whenw = —m the last two components are zero.
Thus, the following statement is true.

X

Theorem 3The functionsq* and ¢~, wherea, k = 0,3 are arbitrary (independent)
complex constants, belong to Kef’,, when the potentiap satisfies (20) and? = m?.
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Note that to obtain the corresponding solutions of (1) one has just to multiply the
functions from ke?’, by &'

6. Solutions for the scalar potential

In this section we find some exact solutions to the following Dirac equation with scalar
potential:

3
D (x) = [ — > ik +im + ¢(w)}q(w) =0. (31)
k=1

The scalar potential (see, e.g. [22,p 108]) may be considered asdapendent rest mass
and is used as a model for quark confinement. We assume thatisfies (12). Applying
the transform4 we obtain that

R = —Ay1yaysDic A7
where
R := D+ MY¥®2 4 M = —mi,.
Let us introduce the following projection operators
Z:l: — %M(lﬂ:iiz).
Then the operatoR‘ can be rewritten in the following form
R =ZY D+ (¢ +im))+ Z~ (D — (¢ +im)I)

where the operatorg* commute with the operators in parentheses. Consequently, we may
look for the solutions to (31) of the form

u=2vf+272g

where f € ker(D + (¢ +im)I) andg € ker(D — (¢ + im)I). Thus, we can use the results
of section 4.1 and immediately write down the corresponding funatierker R:¢:

$+im)? b+im)? (@+im)? (@+im)2

u=2z Qe “wat + 0 e T a )+ 2 (0 e T bt + Qe H b))

where Q% = 2(1j: gradg) anda™, b* are arbitrary constant complex quaternions.
Let us mtroduce the foIIowmg notations:

(¢+|m)

— 7H(Qte W at) T=77(Q e a)
= z—(Q—e—“”*'

Now let us apply the transfortd ! to the functions:™*, u*~, u~*, »~—. Then introducing
the following notations:

(32)

by u =700 e ),

Aat = —%(iaa—L + iaiE + azi + aéc) AjE = l(—ia(:)t + iaiE - aét + aéc)
By = i(iby —ibf — by +b3) B = 3(—iby —iby + by +b3)

we obtain four independent solutions to (31):

++
_ (@t+im)? 4o
gt = A = 8 4 (33)
2c |igg™
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where
g5 " = AJC + AT — 1A] 029 + 1A 03¢
g7t = —1ATC +iAf 01 — AJ 20 — A 93¢
+7
e’ T
= .,471 1 = .511 34
q [u™] °C igs ™ (34)
iqy ™
where
gy = AgC — AL 1 +1A] 020 — iAg 03¢
gy = —1A]C —iAy 01 + Ay dagp + A] 3¢
—+
e gt Zq+
= A u ] = f1 35
q (7] °C gyt (35)
—igy
where
gt 1= By C — By 19 + B 90 — By 03¢
q; "= —iB{ C — By 31 + By 02 + By 03¢
e(¢+im)2 q(z:
2C
= A u ) = i 36
q [u ] >C gy (36)
_|q177
where

4o~ = By C + B 01¢ — iB] 3¢ + By d3¢p
q; = —iB C+iByd1¢ — By 920 — By 33¢.
Let us formulate this result as follows.

Theorem 4The functions (33)—(36), wherels, AT, By, Bf are arbitrary complex
constants, belong to k& when the potentiap satisfies (12).

7. Solutions for the electric potential

We consider the time-harmonic solutiods?, ) = g(x)€’ to the massless Dirac equation
with electric potential:

3
[Vofﬁ, — D v +ived (a:)}@(t, z) = 0. (37)

k=1
For ¢ we have the following equation:
3
DS g(x) = [iwyo - v+ iyo¢(w)]q(cc) =0. (38)
k=1

Here the electric potentig satisfies (12). Applying the transforph we obtain the equality

RY = —Ay1yysDi A1
where

RZ[ = D+M—iq~5(m)i1 +M[x
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o = —iwil.
Let us introduce the following projection operators:

§* 1= IMUIFD,
Then a simple calculation shows that
R = ST(D + (¢(x) + w)]) + S™(D — (¢p(x) + w)])

where the operator§* commute with the operators in parentheses. Thus we reduce
the problem to the case considered in section 4.1, because any two fungtions
ker(D + (¢(x) + w)I) and g € ker(D — (¢(z) + w)I) give us a function: from kerR<:

u=S"f+S"gekerrR”.

Using functions of the form (14) we obtain the corresponding solutions for the op&@tor

u=ST0te gt + 07 4+ S (0 e bt + 0T e b, (39)
The operatorsp* are defined by the equalitie@* := (1 + X grad$)! anda*, b* are
arbitrary constant complex quaternions.

Let us introduce the following notations:

@+0)? G+w)?

utt =St Qe = ah) utT=8St(Q e =™ a)
@tw? G2 (40)
uti=85(Q e = bt u =8 (Q%te = b7).
Applying the transform4~* to the functions (40) and introducing the notations
AOjE = %(—aéE - iali - aét + iaf) Af = %(—iaojE + ali + iaéE + agjf)
By = 1(bg —iby — by —ib3) By = 3(iby + by +iby — b3)
we obtain the following four independent solutions to (38):
(4o "
++ 1r ++ € Ed le *
= A" = 41
q (] 20 _qo++ (41)
—q5 "
where
g5 = AJC + AT — 1A] 020 + 1A 03¢
qur = —iAILC + iAaral(ﬁ - Agaz¢ - Airas(ﬁ
+7
e(¢2'g)2 ‘19%7
= .A71 +-1 — q1 42
q 1= S5 | 2o (42)
—q1
where
gy = AgC — AL + A7 020 — iAg 03¢
gy = —1AJC —iAyo1p + Ay + A] 03¢
—+
o 2 ;IO—+
=AMy = —— | L 43
g =5 | o (43)

q;t
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where
qo " 1= By C + By 01¢p — iB] 0, — By 03¢
g, " =1By C —iBJ01¢ + By 99 — B 336
e(«}w@ ZO__
T o= A_l = l,, 44
q [u] 2c | a4 (44)
q;
where

go = By C — By 01¢ + By 02¢ + iB; 93¢
g, =iB;C +iBy01¢ — By 02¢ + B; 03¢.
Thus, we proved the following statement.

Theorem 5The functions (41)-(44), where\3, AT, By, B are arbitrary complex
constants, belong to k&¢ when the potentiap satisfies (12).

The solutions of (3) (forn = 0) may be obtained from the functions (41)-(44) by
multiplying by €.

Remark 2.Note that if ¢ is a linear combination of independent variables then the
corresponding electric field is constant and some exact solutions for this case (containing
Airy functions) were obtained using the technique of separation of variables (see, e.g. [1]).
Solutions (41)—(44) were obtained by a completely different technique which is why they
do not coincide with the known ones and have a simpler form.

8. Conclusions

The technique of biquaternionic projection operators shown in action in this work allowed
us to obtain some families of solutions of Dirac’s equation with a harmonic one-component
potential the gradient squared of which is a constant. The last condition is quite restrictive
but an interesting point is that the method of separation of variables was always the main
tool for obtaining exact solutions of relativistic wave equations and here it is substituted
by an essentially different technique which takes into account other characteristics of the
potential. That is why the class of potentials considered in this work is so different from
the potentials for which there were known exact solutions. The same can be said about
spectrum theory of Dirac’s operator. Usually, all conclusions about the spectrum are based
on the behaviour of the potential at infinity or other asymptotic properties. In this work
we obtained information on the spectrum proceeding from differential characteristics of the
potential. Finally, the technique proposed in this paper is able to give results for a much
wider class of potentials, at least for potentials described in remark 1, and so this work will
be continued.
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